An insight into statistical refractive index properties of cell internal structure via low-coherence statistical amplitude microscopy
نویسندگان
چکیده
Refractive index properties, especially at the nanoscale, have shown great potential in cancer diagnosis and screening. Due to the intrinsic complexity and weak refractive index fluctuation, the reconstruction of internal structures of a biological cell has been challenging. In this paper, we propose a simple and practical approach to derive the statistical properties of internal refractive index fluctuations within a biological cell with a new optical microscopy method--Low-coherence Statistical Amplitude Microscopy (SAM). We validated the capability of SAM to characterize the statistical properties of cell internal structures, which is described by numerical models of one-dimensional Gaussian random field. We demonstrated the potential of SAM in cancer detection with an animal model of intestinal carcinogenesis--multiple intestinal neoplasia mouse model. We showed that SAM-derived statistical properties of cell nuclear structures could detect the subtle changes that are otherwise undetectable by conventional cytopathology.
منابع مشابه
Inverse scattering problem for optical coherence tomography.
We deal with the imaging problem of determining the internal structure of a body from backscattered laser light and low-coherence interferometry. Specifically, using the interference fringes that result when the backscattering of low-coherence light is made to interfere with the reference beam, we obtain maps detailing the values of the refractive index within the sample. Our approach accounts ...
متن کاملStudying Focusing Properties of Graded Index Photonic Crystals Made of Material with Different Refractive Index
In this paper we investigate focusing properties of graded index (GRIN) photonic crystal (PC) structures which are composed of different materials with different refractive indices. GRIN PC structure is constructed from air holes in dielectric background. The holes radii are varied in the normal direction to the propagation in such a way that a parabolic effective refractive index is produced. ...
متن کاملاندازهگیری همزمان ضریب شکست و ضخامت فیزیکی دستگاههای چندلایهای با استفاده از نتایج مقطعنگاری همدوسی اپتیکی در فضای فوریه
In fourier domain optical coherence tomography, we can measure the optical thickness ( refractive index n times thickness d), to obtain the retinal layers in order to diagnose many disorders. In this work, we introduce a new method for measurement of refractive index and physical thickness of multiple layers simultaneously by Fourier domain optical coherence tomography, without additional infor...
متن کاملOptical, Photoluminescence and Thermoluminescence Properties Investigation of ZnO and Mn Doped ZnO Nanocrystals
ZnO and ZnO: Mn nanocrystals synthesized via reverse micelle method. The structural properties nanocrystals were investigated by XRD and Transmission electron microscopy (TEM). The XRD results indicate that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. The various optical properties of these nanocrystals such as optical band gap energy, refractive index, dielectr...
متن کاملOptical, Photoluminescence and Thermoluminescence Properties Investigation of ZnO and Mn Doped ZnO Nanocrystals
ZnO and ZnO: Mn nanocrystals synthesized via reverse micelle method. The structural properties nanocrystals were investigated by XRD and Transmission electron microscopy (TEM). The XRD results indicate that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. The various optical properties of these nanocrystals such as optical band gap energy, refractive index, dielectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2010